Third Semester B.E. Degree Examination, Jan./Feb.2021 Analog Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. With necessary equivalent diagram obtain the expression for Z_{in} , A_{V} , Z_{0} for Darlington Emitter follower. (10 Marks)
 - b. For an Emitter bias circuit (capacitor bypassed), determine r_e , Z_i , Z_O and A_V . Given $R_B=470~K\Omega$, $R_C=2.2~K\Omega$, $V_{CC}=20~V$, $R_E=0.56~K\Omega$, $C_E=10~\mu F$, $\beta=120$, $r_0=40~K\Omega$, $C_C=10~\mu F$.

OF

- 2 a. Derive the expression for A_V, A_i, Z_i and Z₀ for C_E fixed bias configuration using complete hybrid equivalent model. (10 Marks)
 - b. Consider a single stage CE amplifier with $R_S = 1$ K and $R_L = 1.2$ K Ω . Calculate A_i , A_i , A_i , if A_i , A_i ,

Module-2

- 3 a. Derive the expression for transconductance g_m for FET. (06 Marks)
 - b. For the circuit shown in the Fig. Q3 (b), calculate (a) V_{GS} (b) I_{DQ} (c) V_{DSQ} (d) V_{D} .

 (10 Marks)

Fig. Q3 (b) **OR**

- 4 a. With necessary equivalent circuit obtain the expression for A_V, Z_{in}, Z_O for a fixed biased JFET amplifier. (08 Marks)
 - b. Derive the expression for Z_i, Z₀, A_V considering common drain amplifier circuit. (08 Marks)

Module-3

- 5 a. Derive the expression for lower cut-of frequencies due to various RC networks in CE amplifiers. (10 Marks)
 - b. Determine the lower cut-off frequency for the emitter follower using BJT amplifier with $C_S=0.1~\mu F$, $R_S=1~K\Omega$, $R_1=12~K\Omega$, $R_2=4~K\Omega$, $R_E=1.5~K\Omega$, $C_C=0.1~\mu F$, $\beta=100$, $r_0=\infty$, $V_{CC}=15~V$, $V_{BE}=0.7~V$.

OR

Describe Miller effect and derive an equation for Miller input and output capacitance.

(08 Marks)

Calculate the overall lower 3 dB and upper 3 dB frequencies for a 3 stage amplifier having (08 Marks) an individual $f_1 = 40$ Hz and $f_2 = 2$ MHz.

Module-4

- Derive the expression for input resistance for a voltage of series and current series feedback. 7 (08 Marks)
 - With a neat circuit diagram, explain FET based phase shift oscillator.

(08 Marks)

- With the help of neat circuit diagram. Explain the operation of Colpitts and Hartley 8 oscillator. Write the expression for the frequency of oscillation.
 - In a transistor Colpitts oscillator $C_1 = 1$ nF, $C_2 = 100$ nF. Find the value of L for a frequency (04 Marks) of 100 kHz.

Module-5

- Show that the transformer coupled class A power amplifier has maximum efficiency of 50%. 9
 - A single transistor amplifier with transformer coupled load produces harmonic amplitudes in the output as,

 $B_0 = 1.5 \text{ mA}$, $B_1 = 120 \text{ mA}$, $B_2 = 10 \text{ mA}$, $B_3 = 4 \text{ mA}$, $B_4 = 2 \text{ mA}$, $B_5 = 1 \text{ mA}$

- Determine the percentage total harmonic distortion.
- Assume a second identical transistor is used along with a suitable transformer to provide push pull operation. Use the above harmonic amplitudes to determine the new (08 Marks) total harmonic distortion.

- Explain with the block diagram, the basic types of voltage regulation circuit. (08 Marks)
 - Explain the operation of complementary symmetry class B amplifier.

(08 Marks)